无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Series] Arithmetic Series of Higher Order

2021-10-03 09:18 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Chinese mathematicians of the Song-Yuan period (960 - 1368 AD) investigated finite sums related to the diagonals of Jia Xian's triangle (arithmetic triangle). The following list given names of several finite sums found in Zhu Shijie’s "Suanxue Qimeng" (1299) and "SiYuan Yujian" (1303).

"Suanxue Qimeng" 算學(xué)啟蒙 (Introduction to Mathematics)

"SiYuan Yujian" 四元玉監(jiān) (Jade Mirror of the Four Unknowns)

茭草垛
1%2B2%2B3%2B4%2B...%2Bn%20%3D%20%5Cfrac%7B1%7D%7B2!%7D%20n(n%2B1)

落一形垛
1%2B3%2B6%2B10%2B...%2B%5Cfrac%7B1%7D%7B2!%7Dn(n%2B1)%20%3D%20%5Cfrac%7B1%7D%7B3!%7Dn(n%2B1)(n%2B2)%20

撒星形垛
1%2B4%2B10%2B20%2B...%2B%5Cfrac%7B1%7D%7B3!%7Dn(n%2B1)(n%2B2)%20%3D%20%5Cfrac%7B1%7D%7B4!%7Dn(n%2B1)(n%2B2)(n%2B3)

撒星更落一形垛
1%2B5%2B15%2B35%2B...%2B%20%5Cfrac%7B1%7D%7B4!%7Dn(n%2B1)(n%2B2)(n%2B3)%3D%5Cfrac%7B1%7D%7B5!%7Dn(n%2B1)(n%2B2)(n%2B3)(n%2B4)

These finite sums are called arithmetic series of higher order, which follow the general pattern

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bp!%7Di(i%2B1)(i%2B2)...(i%2Bp-1)%20%3D%20%5Cfrac%7B1%7D%7B(p%2B1)!%7Dn(n%2B1)(n%2B2)...(n%2Bp)

Alternatively this can be expressed as

%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bn%2Bp%7D%7Bp%2B1%7D

Prove this identity.


【Solution】

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%7D%7Bp%7D%20%2B%20%5Cbinom%7Bp%2B1%7D%7Bp%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D

Observe that %20%5Cbinom%7Bp%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%2B1%7D%7Bp%2B1%7D, hence,

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bp%2B1%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B1%7D%7Bp%7D%20%5Cright%5D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

By the binomial identity %20%5Cbinom%7Bn-1%7D%7Bk%7D%20%2B%20%5Cbinom%7Bn-1%7D%7Bk-1%7D%20%3D%20%5Cbinom%7Bn%7D%7Bk%7D, we get

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%2B2%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

Following this step-pattern

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bp%2B2%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%5Cright%5D%20%2B%20%5Cbinom%7Bp%2B3%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

until we reach the final term

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bn%2Bp-1%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20%5Cright%5D%20

Therefore,

%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bn%2Bp%7D%7Bp%2B1%7D


[Series] Arithmetic Series of Higher Order的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
无锡市| 什邡市| 江都市| 内黄县| 玉门市| 潞城市| 靖江市| 永州市| 潮州市| 治县。| 江孜县| 长兴县| 关岭| 兴隆县| 彰化县| 休宁县| 瓦房店市| 贵南县| 疏勒县| 泰来县| 黄大仙区| 文水县| 即墨市| 淮北市| 武鸣县| 博客| 昔阳县| 浠水县| 宁德市| 白城市| 璧山县| 于田县| 清镇市| 夏河县| 普宁市| 曲阳县| 长治县| 宁都县| 凯里市| 柳河县| 鄂托克旗|