无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

一道李正元上中值證明題的思路

2023-07-20 10:09 作者:龍叔啊  | 我要投稿

思路:題目要求證明f''(x)有界,首先從Lagrange入手,因為此時題目已經(jīng)給出了f'''有界,如果使用Taylor定理會引入f',反而不好處理。

如圖,

Lagrange可以聯(lián)系原函數(shù)和導(dǎo)函數(shù)

,并且我們由上圖可知,不妨假設(shè)f'''(ξ)>0(<0同理),此時f''恒在切線上方,但此時題目給出了f'''有界,如

果能限制(x-x0)范圍即可證明出二階導(dǎo)有界。

此時我們將該式子兩邊加上絕對值,并且進行放縮,研究|x-x0|即可。 若0

接下來繼續(xù)研究另一個區(qū)間(x>x0)。 因為根據(jù)圖1的分析,此時Lagrange失效,考慮使用泰勒。

為了消掉f'(x)我們可以在x+x0和x-x0處Taylor展開,如上圖所示。

聯(lián)立兩式,用絕對值不等式進行放縮,可以證明有界。

此時我們不難發(fā)現(xiàn)x0具有任意性,x0=1即為李正元書上的特殊情況。

這里再補充一道原函數(shù)和導(dǎo)函數(shù)的題目

一道李正元上中值證明題的思路的評論 (共 條)

分享到微博請遵守國家法律
罗源县| 南澳县| 弋阳县| 高陵县| 马尔康县| 大邑县| 琼中| 越西县| 昌平区| 江山市| 紫阳县| 卢氏县| 光泽县| 拜城县| 滕州市| 龙门县| 霍林郭勒市| 盐亭县| 灌南县| 墨竹工卡县| 兴仁县| 无为县| 荆州市| 漳州市| 西平县| 麟游县| 尉氏县| 瑞丽市| 新乐市| 博罗县| 商南县| 左权县| 响水县| 南开区| 阜阳市| 神农架林区| 拜泉县| 黄冈市| 武胜县| 安庆市| 石屏县|