无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Calculus(88)——Cauchy-Goursat Theorem

2023-06-26 23:34 作者:Mark-McCutcheon  | 我要投稿

To accustom myself to the imminent mathematics course which will be taught in English totally in the university and practice my English writing,I?will write latter articles in English.However,because I'm only a prospective college student,maybe there will be lots of mistakes and error concerning grammar,words and sentences,please don't mind.

In this article,we will study the Cauchy Integral theorem deeperly.

(the original edition of Cauchy theorem)

If a?function?f(z) is analytic on a single-connective domain?and there is a curve?C which is a piecewisely smooth simple closed curve and is included entirely by the domain,then we have

%5C%5C%5Cint_%7BC%7Df(z)%20%5C%20dz%3D0

Virtually,because a?curve which is not simple can be divided into several simple curves by disconnecting its junctions,we can cancel the condition "simple" in the theorem.

From another aspect,since we said that a function is analytic on a closed domain?means it is analytic on a domain?including this?closed domain,we can change the theorem into a version as follows:

(a better edition)

If a function?f(z) is analytic on?a closed??domain

%5C%5C%5Cbar%7BD%7D%3DD%5Ccup%20%20C

and?C?is a piecewisely smooth simple closed curve,then we have

%5C%5C%5Cint_%7BC%7Df(z)%20%5C%20dz%3D0

Actually we have a ultimate version of the theorem concerning the?single-connective domain.

(ultimate edition)

There is a curve?C?which?is?piecewisely?smooth and simple closed with interior?D.Function?f(z)?is analytic on?D?and is continuous on?

%5C%5C%5Cbar%7BD%7D%3DD%5Ccup%20%20C

then we have

%5C%5C%5Cint_%7BC%7Df(z)%20%5C%20dz%3D0

Theorem on complex-connected domain

Consider

%5C%5CC_0%2CC_1%2C%E2%80%A6%2CC_n

which are?piecewisely smooth simple closed curves.Among?them,

%5C%5CC_1%2CC_2%2C%E2%80%A6%2CC_n

are all included in the exterior of each other,but them are also all included in the interior of curve?C_0.Then we say that the point set in C_0 and simultaneously out of?

%5C%5CC_1%2CC_2%2C%E2%80%A6%2CC_n

is a complex-connected domain D with?

%5C%5CC_0%2CC_1%2C%E2%80%A6%2CC_n

as its boundary:

%5C%5CC%3DC_0%2BC_1%5E-%2BC_2%5E-%2B%E2%80%A6%2BC_n%5E-

If an observer move along the boundary orientating?its positive direction,points of the point set will always be on the observer's left.Such as

I use circles because of convenience

Under this circumstance,if function?f(z)?is analytic on?D?and is continuous on

%5C%5C%5Cbar%7BD%7D%3DD%5Ccup%20%20C

then we have

%5C%5C%5Cint_%7BC%7Df(z)%20%5C%20dz%3D0

or

%5C%5C%5Cint_%7BC_0%7Df(z)%20%5C%20dz%2B%5Cint_%7BC_1%5E-%7Df(z)%20%5C%20dz%2B%E2%80%A6%2B%5Cint_%7BC_n%5E-%7Df(z)%20%5C%20dz%3D0

or

%5C%5C%5Cint_%7BC_0%7Df(z)%20%5C%20dz%3D%5Cint_%7BC_1%7Df(z)%20%5C%20dz%2B%5Cint_%7BC_2%7Df(z)%20%5C%20dz%2B%E2%80%A6%2B%5Cint_%7BC_n%7Df(z)%20%5C%20dz

It tells us that the integral along the external boundary equals the sum of the integral along the internal boundaries.

If we want to prove this ,we just need to split the domain into two?single-connective domains using line segments(or arcs)

split up

And use the former theorem concerning?single-connective domain.Because that the integrals along the line segments(or arcs) can be offset,then we can find that the integral along zhe whole complex curve equals the integrals along the boundaries of the two?single-connective domains.it's zero.

Calculus(88)——Cauchy-Goursat Theorem的評論 (共 條)

分享到微博請遵守國家法律
噶尔县| 平邑县| 四会市| 察隅县| 博野县| 布拖县| 江华| 莱州市| 海伦市| 湄潭县| 区。| 三门县| 南汇区| 浦城县| 罗源县| 方城县| 中宁县| 兰州市| 黄骅市| 江华| 昌邑市| 合肥市| 昔阳县| 大兴区| 睢宁县| 林州市| 舞阳县| 麻城市| 永平县| 临湘市| 铜梁县| 鸡东县| 和田县| 包头市| 翁牛特旗| 山东省| 平遥县| 克山县| 屏东县| 聊城市| 页游|